548 research outputs found

    Variational Characterisations of Separability and Entanglement of Formation

    Get PDF
    In this paper we develop a mathematical framework for the characterisation of separability and entanglement of formation (EoF) of general bipartite states. These characterisations are of the variational kind, meaning that separability and EoF are given in terms of a function which is to be minimized over the manifold of unitary matrices. A major benefit of such a characterisation is that it directly leads to a numerical procedure for calculating EoF. We present an efficient minimisation algorithm and an apply it to the bound entangled 3X3 Horodecki states; we show that their EoF is very low and that their distance to the set of separable states is also very low. Within the same variational framework we rephrase the results by Wootters (W. Wootters, Phys. Rev. Lett. 80, 2245 (1998)) on EoF for 2X2 states and present progress in generalising these results to higher dimensional systems.Comment: 11 pages RevTeX, 4 figure

    Comment on "Optimum Quantum Error Recovery using Semidefinite Programming"

    Get PDF
    In a recent paper ([1]=quant-ph/0606035) it is shown how the optimal recovery operation in an error correction scheme can be considered as a semidefinite program. As a possible future improvement it is noted that still better error correction might be obtained by optimizing the encoding as well. In this note we present the result of such an improvement, specifically for the four-bit correction of an amplitude damping channel considered in [1]. We get a strict improvement for almost all values of the damping parameter. The method (and the computer code) is taken from our earlier study of such correction schemes (quant-ph/0307138).Comment: 2 pages, 1 figur

    Notes on multiplicativity of maximal output purity for completely positive qubit maps

    Full text link
    A problem in quantum information theory that has received considerable attention in recent years is the question of multiplicativity of the so-called maximal output purity (MOP) of a quantum channel. This quantity is defined as the maximum value of the purity one can get at the output of a channel by varying over all physical input states, when purity is measured by the Schatten qq-norm, and is denoted by νq\nu_q. The multiplicativity problem is the question whether two channels used in parallel have a combined νq\nu_q that is the product of the νq\nu_q of the two channels. A positive answer would imply a number of other additivity results in QIT. Very recently, P. Hayden has found counterexamples for every value of q>1q>1. Nevertheless, these counterexamples require that the dimension of these channels increases with 1−q1-q and therefore do not rule out multiplicativity for qq in intervals [1,q0)[1,q_0) with q0q_0 depending on the channel dimension. I argue that this would be enough to prove additivity of entanglement of formation and of the classical capacity of quantum channels. More importantly, no counterexamples have as yet been found in the important special case where one of the channels is a qubit-channel, i.e. its input states are 2-dimensional. In this paper I focus attention to this qubit case and I rephrase the multiplicativity conjecture in the language of block matrices and prove the conjecture in a number of special cases.Comment: Manuscript for a talk presented at the SSPCM07 conference in Myczkowce, Poland, 10/09/2007. 12 page

    Entropy power inequalities for qudits

    Get PDF
    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f (√a X + √1 - aY) ≥ af(X)+(1 - a)f(Y) ∀a ∈ [0,1]. Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0,1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.KA acknowledges support by an Odysseus Grant of the Flemish FWO. MO acknowledges financial support from European Union under project QALGO (Grant Agreement No. 600700) and by a Leverhulme Trust Early Career Fellowhip (ECF-2015-256)

    Lower Bound on Entanglement of Formation for the Qubit-Qudit System

    Get PDF
    Wootters [PRL 80, 2245 (1998)] has derived a closed formula for the entanglement of formation (EOF) of an arbitrary mixed state in a system of two qubits. There is no known closed form expression for the EOF of an arbitrary mixed state in any system more complicated than two qubits. This paper, via a relatively straightforward generalization of Wootters' original derivation, obtains a closed form lower bound on the EOF of an arbitary mixed state of a system composed of a qubit and a qudit (a d-level quantum system, with d greater than or equal to 3). The derivation of the lower bound is detailed for a system composed of a qubit and a qutrit (d = 3); the generalization to d greater than 3 then follows readily.Comment: 14 pages, 0 Figures, 0 Table
    • …
    corecore